img

官方微信

高级检索

中国沙漠 ›› 2025, Vol. 45 ›› Issue (3): 60-71.DOI: 10.7522/j.issn.1000-694X.2025.00046

• • 上一篇    下一篇

干旱沙区植被恢复与重建对碳循环关键过程的影响研究进展

虎瑞(), 高艳红(), 张鹏, 李小军   

  1. 中国科学院西北生态环境资源研究院 沙坡头沙漠研究试验站/干旱区生态安全与可持续发展全国重点实验室,甘肃 兰州 730000
  • 收稿日期:2025-03-28 修回日期:2025-05-08 出版日期:2025-05-20 发布日期:2025-06-30
  • 通讯作者: 高艳红
  • 作者简介:虎瑞(1984—),女,甘肃兰州人,副研究员,研究方向为土壤生态学。E-mail: hurui@lzb.ac.cn
  • 基金资助:
    宁夏回族自治区重点研发计划项目(2023BEG02040);国家自然科学基金项目(32471729);甘肃省自然科学基金项目(23JRRA621)

Review on the effects of vegetation revegetation on key carbon cycle processes in arid sandy regions

Rui Hu(), Yanhong Gao(), Peng Zhang, Xiaojun Li   

  1. Shapotou Desert Research and Experiment Station / National Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2025-03-28 Revised:2025-05-08 Online:2025-05-20 Published:2025-06-30
  • Contact: Yanhong Gao

摘要:

植被恢复与重建是干旱区沙化土地修复的关键措施,该过程通过改变地表覆盖、生物多样性和土壤有机质含量等影响区域碳循环过程。本文综述了近70年来中国北方沙区植被恢复与重建对碳循环关键过程的影响及其机制。结果表明:植被恢复通过植被-结皮-土壤复合体提升光合固碳能力,其中人工林地、灌丛和草本群落的净生态系统碳交换(NEE)分别为-386~-245、-280~-156、-210~-125 g·m-2·a-1,生物土壤结皮(BSCs)的年固碳量可达11.36~26.75 g·m-2·a-1。土壤呼吸和有机碳矿化速率随植被恢复时间延长呈增加趋势,土壤CO2释放受植被组成、恢复年限、BSCs发育程度及季节性水热波动的综合调控,表现出显著的空间异质性和时间动态特征。植被恢复通过增加生物量碳输入、BSCs发育及改善土壤团聚体结构,显著提升土壤有机碳(SOC)储量,0~100 cm土层SOC储量0.19~7.71 kg·m-2,其固存速率受生态恢复措施配置、土壤基质属性及水热耦合关系等多因子协同控制,土壤碳氮耦合机制对系统碳汇功能具有关键调控作用。植被恢复与重建显著改变地表温室气体通量格局,CO₂通量动态呈现复杂的环境响应特征。未来需加强多尺度长期监测,深化BSCs功能、气候变化响应及碳氮耦合机制研究,为优化沙区植被恢复模式及实现“碳中和”目标提供科学支撑。

关键词: 碳循环, 土壤呼吸, 土壤有机碳储量, 碳通量, 植被恢复, 北方沙区

Abstract:

Vegetation restoration and reconstruction are key measures for the remediation of desertified lands in arid regions. This process profoundly influences regional carbon cycling by altering surface cover, biodiversity, and soil organic matter. This paper reviews the impact and mechanisms of vegetation restoration and reconstruction on key carbon cycling processes over the past 70 years in the sandy areas of northern China. The results indicate that vegetation restoration enhances photosynthetic carbon sequestration through the "vegetation-biocrust-soil" complex, with net ecosystem carbon exchange (NEE) measurements of -386 to -245, -280 to -156, and -210 to -125 g·m-2·a-1 for artificial forests, shrublands, and herbaceous communities, respectively. The annual carbon sequestration by biological soil crusts (BSCs) can reach 11.36 to 26.75 g·m-2·a-1. Soil respiration and organic carbon mineralization rates tend to increase with longer vegetation restoration periods. Soil CO2-C release is regulated by a combination of factors including vegetation composition, restoration duration, BSCs development level, and seasonal hydrological and thermal fluctuations, demonstrating significant spatial heterogeneity and temporal dynamics. Vegetation restoration significantly enhances soil organic carbon (SOC) storage by increasing biomass carbon input, BSC development, and improving soil aggregate structure, with SOC storage in the 0-100 cm soil layer reaching 0.19 to 7.71 kg·m-2. The sequestration rate is co-controlled by multiple factors such as ecological restoration measures, soil substrate properties, and hydrothermal coupling. The carbon-nitrogen coupling mechanism plays a key regulatory role in the carbon sink function of the system. Vegetation restoration and reconstruction significantly alter the surface greenhouse gas flux pattern, with CO2 flux dynamics showing complex environmental response characteristics. Future research should strengthen multi-scale long-term monitoring and deepen studies on BSC function, climate change responses, and carbon-nitrogen coupling mechanisms to provide scientific support for optimizing vegetation restoration models in sandy areas and achieving the "dual carbon" goals.

Key words: carbon cycle, soil respiration, SOC storage, carbon flux, revegetation, sandy areas in North China

中图分类号: